79 research outputs found

    Evaluation of contextual embeddings on less-resourced languages

    Get PDF
    The current dominance of deep neural networks in natural language processing is based on contextual embeddings such as ELMo, BERT, and BERT derivatives. Most existing work focuses on English; in contrast, we present here the first multilingual empirical comparison of two ELMo and several monolingual and multilingual BERT models using 14 tasks in nine languages. In monolingual settings, our analysis shows that monolingual BERT models generally dominate, with a few exceptions such as the dependency parsing task, where they are not competitive with ELMo models trained on large corpora. In cross-lingual settings, BERT models trained on only a few languages mostly do best, closely followed by massively multilingual BERT models

    CoSimLex : A Resource for Evaluating Graded Word Similarity in Context

    Get PDF
    State of the art natural language processing tools are built on context-dependent word embeddings, but no direct method for evaluating these representations currently exists. Standard tasks and datasets for intrinsic evaluation of embeddings are based on judgements of similarity, but ignore context; standard tasks for word sense disambiguation take account of context but do not provide continuous measures of meaning similarity. This paper describes an effort to build a new dataset, CoSimLex, intended to fill this gap. Building on the standard pairwise similarity task of SimLex-999, it provides context-dependent similarity measures; covers not only discrete differences in word sense but more subtle, graded changes in meaning; and covers not only a well-resourced language (English) but a number of less-resourced languages. We define the task and evaluation metrics, outline the dataset collection methodology, and describe the status of the dataset so far.Peer reviewe

    A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks

    Get PDF
    In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed

    A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data

    Get PDF
    Background: Feature selection techniques are critical to the analysis of high dimensional datasets. This is especially true in gene selection from microarray data which are commonly with extremely high feature-to-sample ratio. In addition to the essential objectives such as to reduce data noise, to reduce data redundancy, to improve sample classification accuracy, and to improve model generalization property, feature selection also helps biologists to focus on the selected genes to further validate their biological hypotheses.Results: In this paper we describe an improved hybrid system for gene selection. It is based on a recently proposed genetic ensemble (GE) system. To enhance the generalization property of the selected genes or gene subsets and to overcome the overfitting problem of the GE system, we devised a mapping strategy to fuse the goodness information of each gene provided by multiple filtering algorithms. This information is then used for initialization and mutation operation of the genetic ensemble system.Conclusion: We used four benchmark microarray datasets (including both binary-class and multi-class classification problems) for concept proving and model evaluation. The experimental results indicate that the proposed multi-filter enhanced genetic ensemble (MF-GE) system is able to improve sample classification accuracy, generate more compact gene subset, and converge to the selection results more quickly. The MF-GE system is very flexible as various combinations of multiple filters and classifiers can be incorporated based on the data characteristics and the user preferences. <br /

    A Markov blanket-based method for detecting causal SNPs in GWAS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detecting epistatic interactions associated with complex and common diseases can help to improve prevention, diagnosis and treatment of these diseases. With the development of genome-wide association studies (GWAS), designing powerful and robust computational method for identifying epistatic interactions associated with common diseases becomes a great challenge to bioinformatics society, because the study of epistatic interactions often deals with the large size of the genotyped data and the huge amount of combinations of all the possible genetic factors. Most existing computational detection methods are based on the classification capacity of SNP sets, which may fail to identify SNP sets that are strongly associated with the diseases and introduce a lot of false positives. In addition, most methods are not suitable for genome-wide scale studies due to their computational complexity.</p> <p>Results</p> <p>We propose a new Markov Blanket-based method, DASSO-MB (Detection of ASSOciations using Markov Blanket) to detect epistatic interactions in case-control GWAS. Markov blanket of a target variable T can completely shield T from all other variables. Thus, we can guarantee that the SNP set detected by DASSO-MB has a strong association with diseases and contains fewest false positives. Furthermore, DASSO-MB uses a heuristic search strategy by calculating the association between variables to avoid the time-consuming training process as in other machine-learning methods. We apply our algorithm to simulated datasets and a real case-control dataset. We compare DASSO-MB to other commonly-used methods and show that our method significantly outperforms other methods and is capable of finding SNPs strongly associated with diseases.</p> <p>Conclusions</p> <p>Our study shows that DASSO-MB can identify a minimal set of causal SNPs associated with diseases, which contains less false positives compared to other existing methods. Given the huge size of genomic dataset produced by GWAS, this is critical in saving the potential costs of biological experiments and being an efficient guideline for pathogenesis research.</p
    corecore